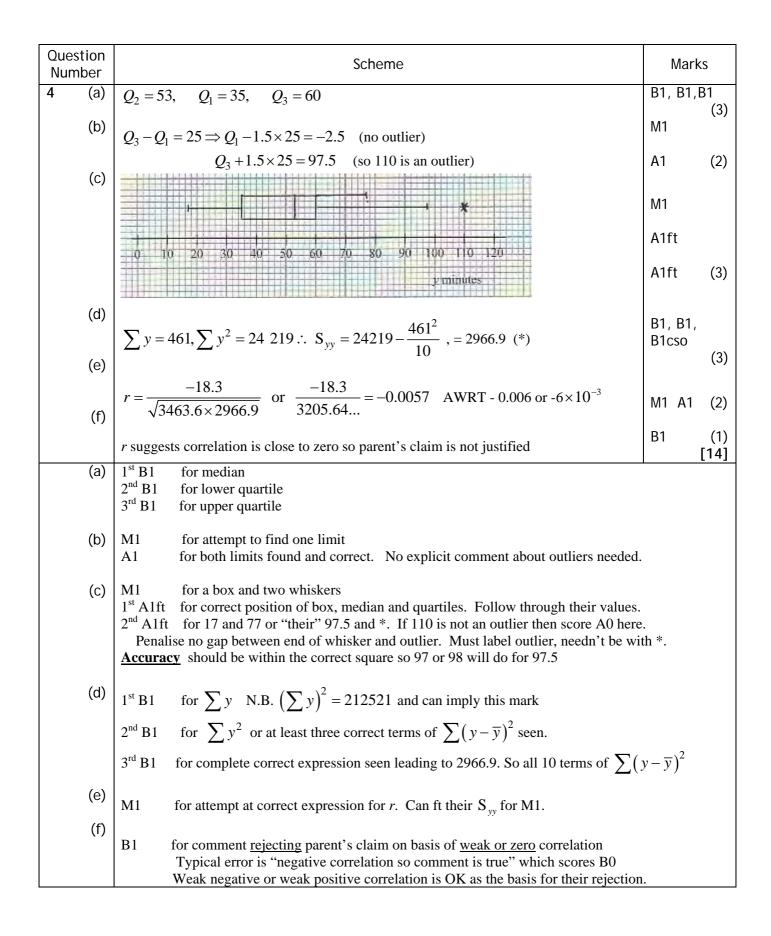


Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6683/01)



January 2009 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks	
1 (a)	$S_{xx} = 57.22 - \frac{(21.4)^2}{10} = 11.424$	M1 A1	
(a)	$S_{xy} = 313.7 - \frac{21.4 \times 96}{10} = 108.26$	A1 (3	3)
(b)	$b = \frac{S_{xy}}{S_{xx}} = 9.4765$	M1 A1 M1	
	$a = \overline{y} - b\overline{x} = 9.6 - 2.14b = (-10.679)$	A1 (4	4)
(c)	y = -10.7 + 9.48x Every (extra) <u>hour</u> spent using the programme produces about <u>9.5 marks improvement</u>	B1ft (1	I)
(d)	$y = -10.7 + 9.48 \times 3.3 = 20.6$ awrt 21	M1,A1 (2	2)
(e)	Model may not be valid since [8h is] outside the range [0.5 - 4].	B1 (1 [11	
(a)	M1 for a correct expression 1^{st} A1 for AWRT 11.4 for S_{xx}		
	2^{nd} A1 for AWRT 108 for S_{xy}		
(b)	Correct answers only: One value correct scores M1 and appropriate A1, both correct M1A1A1		
	1^{st} M1for using their values in correct formula 1^{st} A1for AWRT 9.5 2^{nd} M1for correct method for a (minus sign required) 2^{nd} A1for equation with a and b AWRT 3 sf (e.g. $y = -10.68 + 9.48x$ is fine)		
(c)	Must have a full equation with a and b correct to awrt 3 sfB1ftfor comment conveying the idea of b marks per hour. Must mention value of b but can		
	ft their value of b. No need to mention "extra" but must mention "marks" and "l e.g. "9.5 times per hour" scores B0	hour(s)"	
(d)	M1 for sub $x = 3.3$ into their regression equation from the end of part (b) A1 for awrt 21		
(e)	B1 for a statement that says or implies that it may <u>not</u> be valid because <u>outside the ra</u> They do not have to mention the values concerned here namely 8 h or 0.5 - 4	ange.	

Question Number	Scheme		Marks	
2 (a)	$E = \text{take regular exercise} \qquad B = \text{always eat breakfast} P(E \cap B) = P(E \mid B) \times P(B) = \frac{9}{25} \times \frac{2}{3} = 0.24 \text{ or } \frac{6}{25} \text{ or } \frac{18}{75}$	M1 A1	(2)	
(b)	$P(E \cup B) = \frac{2}{3} + \frac{2}{5} - \frac{6}{25} \text{or } P(E' \mid B') \text{or } P(B' \cap E) \text{or } P(B \cap E')$ $= \frac{62}{75} \left \begin{array}{c} = \frac{13}{25} \\ = \frac{13}{25} \end{array} \right = \frac{12}{75} \\ P(E' \cap B') = 1 - P(E \cup B) = \frac{13}{75} \text{or } 0.17\dot{3}$	M1 A1 M1 A1	(4)	
(c)	$P(E B) = 0.36 \neq 0.40 = P(E)$ or $P(E \cap B) = \frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$ So <i>E</i> and <i>B</i> are <u>not</u> statistically independent	M1 A1	(2) [8]	
(a)	M1 for $\frac{9}{25} \times \frac{2}{3}$ or P(<i>E</i> <i>B</i>)×P(<i>B</i>) and at least one correct value seen. A1 for 0.24 or exact equiv. NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full marks.			
(b) (c)	1 st M1 for use of the addition rule. Must have 3 terms and some values, can ft their (a) <u>Or</u> a full method for P(E' B') requires 1 - P(E B') and equation for P(E B'): (a) + $\frac{x}{3} = \frac{2}{5}$ <u>Or</u> a full method for P(B' ∩ E) <u>or</u> P(B ∩ E') [or other valid method] 2 nd M1 for a method leading to answer e.g. 1 – P(E ∪ B) <u>or</u> P(B')×P(E' B') <u>or</u> P(B') – P(B' ∩ E) <u>or</u> P(E') – P(B ∩ E') <u>Venn Diagram</u> 1 st M1 for diagram with attempt at $\frac{2}{5}$ – P(B ∩ E) or $\frac{2}{3}$ – P(B ∩ E). Can ft their (a) 1 st A1 for a correct first probability as listed or 32, 18 and 12 on Venn Diagram 2 nd M1 for identifying suitable values to test for independence e.g. P(E) = 0.40 and P(E B) = 0.36 <u>Or</u> P(E)×P(B) = and P(E ∩ B) = their (a) [but their (a) $\neq \frac{2}{5} \times \frac{2}{3}$]. Values seen somewhere A1 for correct values and a correct comment Diagrams You may see these or find these useful for identifying probabilities.			
	$\frac{2}{1} + \frac{1}{1} + \frac{1}$	scores M1		

Ques Num			Scheme		Marks	
3	(a)	$E(X) = 0 \times 0.4 + 1 \times 0.3 + \dots + 3 \times 0.1, = 1$			M1, A1 (2)	
	(b)	F				
			$F(1.5) = [P(X \le 1.5) =] P(X \le 1), = 0.4 + 0.3 = 0.7$			
	(c)	$E(X^2) = 0^2 \times 0.4 + 1^2 \times 0.3 + + 3^2 \times 0.1$, = 2			M1, A1 M1, A1cso	
		$Var(X) = 2 - 1^2$, = 1 (*)	(4)			
	(d)	$Var(5-3X) = (-3)^2 Var(X), = 9$			M1, A1 (2)	
	(e)	Total	Cases	Probability		
			$(X=3) \cap (X=1)$	$0.1 \times 0.3 = 0.03$		
		4 (2	$X = 1) \cap (X = 3)$	$0.3 \times 0.1 = 0.03$		
		(2	$(X=2) \cap (X=2)$	$0.2 \times 0.2 = 0.04$	D1D1D1	
		5 (2	$(X=3) \cap (X=2)$	$0.1 \times 0.2 = 0.02$	B1B1B1	
		(2	$(X=2) \cap (X=3)$	$0.2 \times 0.1 = 0.02$	M1	
		6 (2	$X=3) \cap (X=3)$	$0.1 \times 0.1 = 0.01$	A1	
		Total probability = $0.03 + 0.03 + 0$.04 +0.02 + 0.02 + 0	0.01 = 0.15	A1 (6) [16]	
	(a)	M1 for at least 3 terms seen. C	Correct answer only	scores M1A1. Dividing b		
	(b) M1 for $F(1.5) = P(X \le 1)$.[Beware : $2 \times 0.2 + 3 \times 0.1 = 0.7$ but scores M0A0])]	
ALT	(c)	1 st A1 is for an answer of 2 or a fully correct expression. 2 nd M1 for $-\mu^2$, condone 2 – 1, unless clearly 2 Allow $2-\mu^2$, with $= 1$ even if $E(X) \neq 1$ 2 nd A1 for a fully correct solution with no incorrect working seen, both Ms required. $\sum (x-\mu)^2 \times P(X=x)$				
		1 st M1 for an attempt at a full list	· · · ·			
		2 nd M1 for at least 2 non-zero terr	ms of $(x - \mu)^2 \times P(x)$	X = x) seen. 2 nd A1 for	0.4 + 0.2 + 0.4 = 1	
	(d) (e)	M1 for use of the correct formula. $-3^2 \operatorname{Var}(X)$ is M0 unless the final answer is >0.				
ALT		2 nd B1 for all cases listed for 2 t 3 rd B1 for a complete list of all <u>Using Cumulative probabilities</u> 1 st B1 for one or more cumulati	otals 6 cases ive probabilities used abilities used. 3 rd B rrect probabilities m ties listed (0.03, 0.03	3, 0.04, 0.02, 0.02, 0.01) r	} ghted in a table 3 then 1 or more $2, \geq 2; 3, \geq 1$	

Question Number	Scheme	Mar	ks	
5 (a)	8-10 hours: width = $10.5 - 7.5 = 3$ represented by 1.5cm 16-25 hours: width = $25.5 - 15.5 = 10$ so represented by <u>5 cm</u> 8- 10 hours: height = fd = $18/3 = 6$ represented by 3 cm 16-25 hours: height = fd = $15/10 = 1.5$ represented by <u>0.75 cm</u>	B1 M1 A1	(3)	
(b)	$Q_2 = 7.5 + \frac{(52 - 36)}{18} \times 3 = 10.2$	M1 A1		
	$Q_1 = 5.5 + \frac{(26-20)}{16} \times 2 [= 6.25 \text{ or } 6.3] \text{ or } 5.5 + \frac{(26.25-20)}{16} \times 2 [= 6.3]$	A1		
	$Q_3 = 10.5 + \frac{(78 - 54)}{25} \times 5[=15.3] \text{or } 10.5 + \frac{(78.75 - 54)}{25} \times 5[=15.45 \ \text{(}15.5]]$ IQR = (15.3 - 6.3) = <u>9</u>	A1 A1ft	(5)	
(c)	$\sum fx = 1333.5 \Rightarrow \overline{x} = \frac{1333.5}{104} = $ AWRT <u>12.8</u> $\sum fx^2 = 27254 \Rightarrow \sigma_x = \sqrt{\frac{27254}{104} - \overline{x}^2} = \sqrt{262.05 - \overline{x}^2} $ AWRT <u>9.88</u>	M1 A1		
(d)	$\sum fx^2 = 27254 \Rightarrow \sigma_x = \sqrt{\frac{27254}{104} - \overline{x}^2} = \sqrt{262.05 - \overline{x}^2} \qquad \text{AWRT } \underline{9.88}$	M1 A1	(4)	
(e)	$Q_3 - Q_2 [= 5.1] > Q_2 - Q_1 [= 3.9]$ or $Q_2 < \overline{x}$ So data is positively skew	B1ft dB1	(2)	
	Use median and IQR, since data is skewed <u>or</u> not affected by extreme values or outliers	B1 B1	(2) [16]	
(a)	M1 For attempting both frequency densities $\frac{18}{3}$ (= 6) and $\frac{15}{10}$, and $\frac{15}{10} \times SF$, where $SF \neq 10^{-10}$:1		
(b)	NB Wrong class widths (2 and 9) gives $\frac{h}{1.66} = \frac{3}{9} \rightarrow h = \frac{5}{9}$ or 0.55 and scores M1A0			
	M1 for identifying correct interval and a correct fraction e.g. $\frac{\frac{1}{2}(104)-36}{18}$. Condone 52.5 1 st A1 for 10.2 for median. Using $(n + 1)$ allow awrt 10.3			
	2^{nd} A1 for a correct expression for either Q_1 or Q_3 (allow 26.25 and 78.75) <u>Mu</u>	<u>NB</u> : <u>Must see</u>		
	2^{rd} A1 for correct expression for both Q_1 and Q_3	some		
(c)		ethod		
	1 st M1 for attempting $\sum fx$ and \overline{x}	_		
(d)	2 nd M1 for attempting $\sum fx^2$ and σ_x , $$ is needed for M1. Allow <i>s</i> = awrt 9.93			
	1 st B1ft for suitable test, values need not be seen but statement must be compatible with values used. Follow through their values	th		
(e)	 values used. Follow through their values 2nd dB1 Dependent upon their test showing positive and for stating positive skew If their test shows negative skew they can score 1st B1 but lose the second 			
.,	1^{st} B1for choosing median and IQR. Must mention both.}Award independence 2^{nd} B1for suitable reason}	<u>dently</u>		
	e.g. "use median because data is skewed" scores B0B1 since IQR is not mentioned			

Question Number	NChama		Marks	
6 (a)	$P(X < 39) = P\left(Z < \frac{39 - 30}{5}\right)$ = P(Z < 1.8) = <u>0.9641</u> (allow awrt 0.964)	M1 A1	(2)	
(b)	$P(X < d) = P\left(Z < \frac{d - 30}{5}\right) = 0.1151$ 1-0.1151 = 0.8849 $\Rightarrow z = -1.2$ (allow ± 1.2)	M1 B1		
(c)	$1-0.1151 = 0.8849$ $\Rightarrow z = -1.2$ $\therefore \frac{d-30}{5} = -1.2$ $d = 24$ $e - 30$ 1.2 on their set	M1A1	(4)	
(d)	$P(X > e) = 0.1151 \text{ so } e = \mu + (\mu - \text{their } d) \text{ or } \frac{e - 30}{5} = 1.2 \text{ or } - \text{their } z$ $\frac{e = 36}{e = 36}$ $P(d < X < e) = 1 - 2 \times 0.1151$ $= 0.7698 \text{ AWRT } 0.770$	M1 A1 M1	(2)	
	Answer only scores all marks in each section BUT check (b) and (c) are in correct o	A1 rder	(2) [10]	
(a)	M1 for standardising with σ , $z = \pm \frac{39-30}{5}$ is OK A1 for 0.9641 or awrt 0.964 but if they go on to calculate 1 – 0.9641 they get M1A0			
(b)	A1 for 0.9641 or awrt 0.964 but if they go on to calculate $1 - 0.9641$ they get M1A0 1 st M1 for attempting 1- 0.1151. Must be seen in (b) in connection with finding <i>d</i> B1 for $z = \pm 1.2$. They must state $z = \pm 1.2$ or imply it is a <i>z</i> value by its use. This mark is only available in part (b). 2 nd M1 for $\left(\frac{d-30}{5}\right)$ = their negative <i>z</i> value (or equivalent)			
(c)	M1 for a full method to find <i>e</i> . If they used $z = 1.2$ in (b) they can get M1 for $z = \pm 1.2$ If they use symmetry about the mean $\mu + (\mu - \text{their } d)$ then ft their <i>d</i> for M1 Must explicitly see the method used unless the answer is correct.	here		
(d)	M1 for a complete method or use of a correct expression e.g. "their 0.8849" - 0.1151 <u>or</u> If their $d < $ their e using their values with $P(X < e) - P(X < d)$ If their $d \ge$ their e then they can only score from an argument like $1 - 2x0.1151$ A negative probability or probability > 1 for part (d) scores M0A0			